衝撃的挙動測定による土質密度測定法の評価と課題

Evaluation and problem of density measuring method the quality of soil by the shocking behavior measurement

(株)砂子組	正員	○廣上	伸二	(Sinji Hirogami)
(株)砂子組	正員	好川	敏	(Satoshi Yoshikawa)
(株)砂子組	正員	近藤	里史	(Satoshi Kondo)
(株)砂子組	正員	佐藤	昌志	(Masashi Sato)
(株)砂子組	正員	田尻	太郎	(Taro Tajiri)

1. はじめに

土工盛土の品質管理においては、試験施工に基づいた 転圧回数を、GPS を利用して確認する方法が、管理方法 としては優れているため多用されるが、締固め度の直接 試験ではない問題がある。一方、締固め度の直接試験に は砂置換法や衝撃加速度法があるが、判定に日数を要す る,面的管理が困難等の問題が残る。著者らは衝撃加速 度法が非常に合理的な測定方法であり、試験の自動化も 容易であると考え、過年度より図-1 に示すような締め 固め測定機を試作し測定を行ってきた。図-1 のタイヤ ローラーに曳かせる架台の車輪は、高さ 2 cm の突起を 持ち、それによる架台の上下動を加速度計で測定し、測 定加速度に衝撃加速度法を適用して地盤ラーメ定数を推 定する事で、締固め度を転圧中に判定できると考えた。

2. 理論的背景

落石対策便覧¹⁾の落石衝撃力計算式(以後、便覧式) は、質量 m_1 , m_2 、半径 R_1 , R_2 、弾性係数 E_1 , E_2 , ポアソ ン比 v_1 , v_2 を持つ 2 個の球の衝突速度 v による弾性衝 突を考察し、両者に働く接触加速度の最大値を運動方程 式の時間積分形から予想して、それに質量をかける事で 衝突衝撃力 P を計算する方法である。その際の弾性挙動 としては静的なヘルツの球面接触力式が用いられる²⁾。 結果を示すと以下となる。

$$P = \left(\frac{4}{3}\right)^{2/5} \left(\frac{5}{4}\right)^{3/5} \left(\frac{E_1 E_2}{E_1 (1 - v_2^2) + E_2 (1 - v_1^2)}\right)^{2/5} \times \left(\frac{R_1 R_2}{R_1 + R_2}\right)^{1/5} \left(\frac{m_1 m_2}{m_1 + m_2}\right)^{3/5} v^{6/5}$$
(\$\vec{x}. 1)

(式.1)で球 2 を地盤とみなすため、 $R_1/R_2=0$, $m_1/m_2=0$ とすると、

$$P = \left(\frac{4}{3}\right)^{2/5} \left(\frac{5}{4}\right)^{3/5} \left(\frac{E_1 E_2}{E_1 (1 - v_2^2) + E_2 (1 - v_1^2)}\right)^{2/5} \times R_1^{1/5} m_1^{3/5} v^{6/5}$$
(E.2)

が得られる。次に落石密度 ρ_1 を導入し $m_1 = (4/3) \times \pi$ $\rho_1 R_1^3$ から、形状に関わる寸法値 R_1 を消去すると(式.3) である。(式.3)を用いると、地盤と落石の弾性係数とポ

アソン比を具体的に与えれば、落石衝撃力Pを落石質量

図-1 締め固め測定機

$$P = \left(\frac{4}{3}\right)^{2/5} \left(\frac{5}{4}\right)^{3/5} \left(\frac{3}{4\pi}\right)^{1/15} \left(\frac{1}{\rho_1}\right)^{1/15} \times \left(\frac{E_1 E_2}{E_1 (1 - \nu_2^2) + E_2 (1 - \nu_1^2)}\right)^{2/5} m_1^{2/3} \nu_{(\vec{x}.3)}^{6/5}$$

m₁と密度ρ₁, 落石速度 v から計算できる事になる。

しかし、地盤と落石の弾性係数等を具体的に与える事 は困難であるので落体便覧では、さらに落石は地盤より 非常に固いとして E₂/E₁=0 とする。

$$P = \left(\frac{4}{3}\right)^{2/5} \left(\frac{5}{4}\right)^{3/5} \left(\frac{3}{4\pi}\right)^{1/15} \left(\frac{1}{\rho_1}\right)^{1/15} \left(\frac{1-2\nu_2}{\nu_2(1-\nu_2)}\right)^{2/5} \times \lambda_2^{2/5} m_1^{2/3} \nu^{6/5}$$
(17)

落石に対して $\rho_1=2.6 \text{ t/m}^3$ 、地盤に対して $\nu_2=0.25$ を仮定し、(1/2)×m₁v²=m₁gh(g:重力加速度,h:落石 落下高)も考慮して、

$$P = 2.108 \lambda_2^{2/5} (m_1 g)^{2/3} h^{3/5}$$
 (式.5)
を与えている(単位は、t, m, kN)。ただし λ_2 はラーメ定数で、

$$\lambda_2 = \frac{(1+\nu_2)(1-2\nu_2)}{\nu_2} E_2 \qquad (\vec{\mathbf{x}}.\,6)$$

図-1 実測データ(加速度および速度)

である(式.1)は、どのようなケースの弾性衝突にも理論 上は適用可能である。

(式.1)を衝撃加速度法の基礎式として用いるため、以下に示すパラメータ設定を行った(以後、添え字 1,2 は省略する)。

- m :車輪を含めた架台質量, m =0.010 t
- ρ :車輪を含めた架台密度, $\rho = 5 \text{ t/m}^3$
- $E : E_1 = E_2$

(車輪と地盤の弾性係数は同程度)

- ν : $\nu_1 = \nu_2$, $\nu = 0.25$
 - (車輪と地盤のポアソン比は同程度)
- このパラメータ設定を、t, m, kN 単位で計算すれば、

$$P = 0.257 \lambda^{2/5} (mg)^{2/3} v^{6/5}$$
 (式.7)

となる。ここに、λは地盤のラーメ定数で、P は車輪が 地盤に与える落下衝撃力、v は突起を乗り越えた車輪が 地盤に落下する時の、車輪の持つ鉛直速度。

3. 衝突波形の検出

図-1 に転圧走行中に得られた実測データを示す。図 中の黒の波形は架台上下動を表す加速度(m/s²),緑の ラインは車載 GPS による走行速度(m/s)である。加速 度は最大 20 m/s² (2.04G)程度で衝撃加速度としては 非常に小さい。走行速度は 0.65 m/s (2.34 km/h)程度 で、転圧走行の速度として普通である。横軸は時間で、 赤ラインは車輪の1周期を表す。1周期を拡大したもの が図-2 で、青いハッチ部は、車輪が突起を乗り越え落 下する過程,赤ハッチが地盤と車輪の衝突過程,残りは リバウンドと考えられる。衝突時間は約0.1 s になる。

当初は生データから図-2 の衝突波形を検出するため に、データ上で自己相関を行っていたが非効率だったの で、磁石を利用した機械式スイッチで図-1 の赤ライン のタイミングを取得するようにした。車輪1周期の間に 落下は1回なので、1周期の間の最大値を検索し時間を 遡れば、波形勾配の変化点が衝突開始点となる。

4. データ処理用評価式

データ処理の目的は、実測データに(式.7)を適用し、 地盤ラーメ定数 λ を推定する事である。(式.7)の P は直 接的には図-2 の加速度ピーク値 a_{max} に架台質量 m をか ければ得られるが、一般に加速度を直接使用するよりも 力積を扱った方が安定した結果が得られる。そこで

図-3 衝撃波形

衝突開始

の間を有効な衝撃波形と仮定し、その面積(力積)を A とする(図-3)。平均衝突時間は、

$$\Delta t = \frac{A}{a_{\max} - a_{\min}} \tag{\pi.8}$$

で定義した。P は落下加速度の影響を受けると考えられ るので、 $P=m \cdot a_{max}$ ではなく $P=m(a_{max}-a_{min})$ とした。従 って(式.8)より、 $\Delta t \cdot P=m(a_{max}-a_{min}) \Delta t=mA$ である。 これを用いて(式.7)は、

$$mA = 0.257 \lambda^{2/5} (mg)^{2/3} v^{6/5} \Delta t \qquad (\text{$\vec{x}, 9$)}$$

となる。次に車輪の落下であるが、車輪は図-4 に示す ように、突起に支持されつつ落下し、完全な自由落下で はないと考えられる。実際実データの衝突開始点の加速 度は、ほとんど全て 16 より小さいので、次の有効質量 m₀で、(式.9)のmをおきかえた。

$$m_0 = \frac{|a_{\min}|}{g}m \qquad (\text{\vec{x}. 10)}$$

$$\frac{a_{\min}}{g} mA = 0.257 \lambda^{2/5} (|a_{\min}|m)^{2/3} v^{6/5} \Delta t$$

最後に走行速度と落下速度の関係であるが、地盤に接地した車輪突起は滑らずに回転すると仮定すると、突起高さ (2 cm)と車輪径 (40 cm)より導かれる幾何学的関係から、 $\beta = v/V = 0.533$ が得られデータ処理用評価式は、

(式.11)

$$\frac{|a_{\min}|}{g}mA = 0.257\beta^{6/5}\lambda^{2/5}\frac{|a_{\min}|^{2/3}m^{2/3}V^{6/5}}{a_{\max} - a_{\min}}A$$

となる。ここに v は車輪の落下速度, V は車輪の走行速 度である。(式.12)においてλを除く全てのパラメータ は、実データ図-3から与えられるか定数である。

(式.12)の右辺を有効運動量,左辺を実測運動量と、 ここでは呼ぶ事にする。

5. 適用例

(1) 締固め済盛土および未転圧盛土

図-5 は、砂置換法によって規格値を満たす事を確認 された盛土に対して、走行速度 2~6 km/h の範囲で行っ た試験走行の結果である。y:実測運動量と x:有効運 動量の線形相関は R² 値で 0.881 と非常に高く、傾き ((式.12)右辺の 0.257 $\beta^{6/5} \lambda^{2/5}$) 13.251 から推定され る地盤ラーメ定数は、126000 kN/m²となる。

図-6 は締固め済盛土との比較対照用に行った、未転 圧盛土での転圧走行時の結果である。未転圧盛土の転圧 は通常、ブル等である程度敷きならした後に行われるが、 ここでは比較のために、あえて未整地状態で試験した。

その結果、試験日が降雨直後のぬかるんだ状態であっ た事も影響し(図-7)、測定データはかなりばらついた ものとなったが、転圧1,2回目と3~5回目のラーメ定 数について明確な差異を確認出来た。試験施工による該 当現場の必要転圧回数は4回以上で、3回の転圧に対す る砂置換法による結果は、規格値を満足するものだった。

(式.12)によるデータ評価は、かなりの悪条件にも耐 えうる可能性がある。

(2) 整地状態での転圧

図-8 は、自社開発ソフトでデータ解析した画面で、 試験施工地盤に対する結果になる。横軸,縦軸は図-5, 6 と同じであり、緑のラインは測定データに対する原点 通過の線形相関,赤は無制約の線形相関になる。R²値は 0.661, 0.709程度である。これは図-5,6の時のように 速度を変えず、ほぼ定速で試験したためと考えられる。 傾きからの推定ラーメ定数は 48000 kN/m² と 99000 kN/m²で、相関の取り方でかなりの違いが見られた。

図-6 未転圧盛土に対する結果

図-8 試験施工地盤での結果

図-9,10は整地後転圧の2回目,4回目の結果である。

原点通過の相関を取ると、 $\lambda = 115000$ と 148000 kN/m²。 制約なし相関では $\lambda = 152000$ と 189000 kN/m²になった。

図-9 整地後転圧2回目

図-10 整地後転圧4回目

R²値は0.8で良好である。

このケースでも転圧回数によって推定ラーメ定数は増加し、4回目に対する砂置換結果は規格値を満足した(必要回数4)。しかしながら未整地状態の時と違い、ラーメ定数の急激な増加は見られず、試験施工地盤よりむしろ大きな値が得られた。図-11,12に整地状態での転圧と転圧後の地盤状態を示すが、図-7と比較すると、ブル等の敷きならしには、大きな転圧効果がある可能性を示唆する。

6. まとめ

便覧式と本質的に同等な衝撃力評価で転圧地盤のラー メ定数を推定した結果、未整地地盤においては、転圧回 数に伴う明確なラーメ定数の増加から、転圧完了のタイ ミングを判定できたが、整地された地盤においては明瞭 な判定は出来なかった。これは通常の転圧は、ブル等で 整地した後に行われるため、敷きならし時点でかなりの 転圧効果が生じているためだと思われる。

当方法での転圧/転圧不足の判断は、試験施工時キャ リブレーションを前提にすれば、実用的には相対評価で 可能と考えられるが、ある程度の絶対評価は望まれる。 また試験施工時キャリブレーションでは、図-5のよう に、転圧速度を変えて運用する事が望ましい。

ラーメ定数の絶対評価については、(式.1)に対するパ ラメータ設定が重要となり、次の2つがある。

- 1) 落体(車輪)の正確な見かけ上の弾性係数とポア ソン比。
- 2) 地盤のポアソン比。

1)については要素実験により測定可能と考えられるが、

図-11 整地状態での転圧

図-12 転圧後

2)は盛土材のサンプル試験によるしかなく、結果は不明 確と思われる。

今回推定したラーメ定数は、v = 0.25を仮定するとE =2800Nからは、N値が1~2の範囲にあるが、図-7,12 に示した地盤状態からはN値が低すぎる印象を受ける。 (式.1)のパラメータ設定の影響は大きいと考えられる。

さらに最も大きな課題は、密度とラーメ定数を関連づける、明確な指標や指針がない事である。これについては、盛土材範囲に材料を限定する事を前提にして、今後 ともデータ収集が必要と考えられる。

また現在、自社開発したソフトを用い、図-8~10 に 示した結果を、一回の転圧走行直後に乗車中に見る事は 可能になっている。また転圧軌跡も確認出来る。しかし ながら、走行中リアルタイムに走行位置情報も含めて確 認出来るようなシステムに向けての要望は強く、今後の システム開発上の課題である。

[参考文献]

- 1) 落石対策便覧, 日本道路協会, 2000年7月.
- 2) 落石の衝撃力評価式,池田憲二他,開発土木研究所 月報 No. 558, 1999 年 11 月.